2 visitors on line


Date & Time in Bali


Sunday, 28th February 2021
7:57:56 pm

Previous page



Believe it or not but a wooden house is not more inflammable than a stone house. This, of course, applies to the houses that are properly designed and constructed. Fire safety requirements are different in different countries but the reason is rather connected with the traditions and prejudice. Fortunately, there is a spread of a function-based approach where there are no specific numerical limits, e.g. on the quantity of floors, sidings, etc, but which requires calculatory proof of the fact that the residents’ safety in case of fire stays in the required limits.

The main source of inflammability in a dwelling house is its resident. This is why in the USA, for instance, it is obligatory to use sprinklers nearly everywhere, but strangely less attention is paid to the lanes between the houses or the windows in the walls of the houses confronting each other.

It is not possible to turn timber into non-inflammable material by means of any impregnation or chemical protection, it can only be made poorly inflammable. Behaviour of timber in case of fire is predictable. For instance, the surface of a main support beam profoundly carbonizes ca 0.8 mm/min, therefore it is easy to find the cross-section of such beam in good order to guarantee that the carrying remains, for instance, after 60 minutes of burning. The part unburnt retains all of its carrying capacity.

Steel, for instance, heats up fast in the fire, and the construction may collapse at the yield point (not to mention melting). In this sense, timber is more resistant in fire than steel. As it is said before, the strength characteristics of the timber untouched by fire (in the middle of the cross-section) do not change, and the construction stands as long as the whole part of the cross-section is able to carry the load. That is why you see a collapsed spaghetti like structure when a steel structure has burnt down and may see a timber structure still standing but fully charcoaled. Which one is safer?  





Timber catches fire either directly from a flame or in great heat. In the absence of flames, the surface temperature needs to rise above 400ºC in order to ignite. In the presence of flames, timber ignites when the surface temperature has been at 300ºC for some time. This is a faster process with soft wood than compared to hardwood. Fire spreads along the surface of a wooden element, giving rise to new places of fire. In the beginning the burning is intensive, as a result of which an isolating charcoal layer is formed around the cross-section. Chemical decay begins in the interaction of charcoal and combustible gases, and a so called pyrolytic layer is formed between undamaged and charred timber. This is a five-millimetre thick zone where timber has been chemically influenced by fire but has not been completely decayed. When during the fire the timber under the pyrolytic layer has reached the temperature of 100ºC, the water in the timber begins to vaporise. The temperature stops rising as long as all of the water has vaporised. Very little gas is produced at above 500ºC. However, char “production” is increasing. This explains the look of the timber after fire. The thermal conductivity of charcoal is only 1/6 of the thermal conductivity of timber. This means that the charcoal layer forms an insulation around the undamaged timber that slows down its further damaging. Thanks to insulating charcoal layer the temperature of timber is considerably lower deep inside than in the surface layer. The core of the cross-section of the wooden element remains cold even at a short distance from the burning zone. This avoids damaging temperature strains in the construction as a whole. Unburnt parts retain all of their physical properties of carrying capacity, except for diminishing in size. The time spent on ignition and burning depends on the density of timber. The greater density of timber, the poorer inflammability ans that is the big advantage of using our tropical hardwood with a density 5 times greater than soft wood.




A wooden house on fire. Despite the enomously high temperature the house did not collapse. The trusses, main beams an columns remained in tact. Unburnt parts retained all of their physical properties of carrying capacity, except for diminishing in size.  




A steel strruture after a fire. The steel elements have been heated beyond itts yield point and melted down to a spaghetti like mass.



The great San Fransisco fire after the earthquake in 1906 destroyded a large part of the city, in partcular steel buildings became victim of the heat. The picture shows a wooden beam supporting 2 collapsed steel beams after the fire. Proof and evidence that wood lasts longer and remains stronger during a fire. 



Reviews from Bali Prefab World

"Bali Prefab World is doing an excellent job of modeling the 3-D finite element frame structure in STAAD and now analyzing the individual members to ensure that they are not overstressed. I have just completed a review of the column analysis for the primary columns supporting the roof, and it is well presented and clearly shows the members are adequate size. I have not seen anything like this before the way this report was presented and prepared with the vast knowledge behind. This type of analysis would not have been possible by hand calculation because of the complexity of the structure. Job well done Bali Prefab World".
Review from: Professor Ian Robertson, University of Hawaii
Project: 400 m2 dwelling for Maui
Date: 12-06-2012.
Rating: 5 out of 5.

Read more testimonials from Bali Prefab World: click here
Dear Visitor, In order to show proof and evidence that these testimonials are genuine you may send us an e-mail with a request to provide the e-mail address of the publisher of the testimonial. We will forthwith send you the information so that you can contact the person.
Ask a question
Read our copyrights

Right Click

No right click allowed